113 research outputs found

    Signal generation and propagation in the olfactory bulb: Multicompartmental modeling

    Get PDF
    AbstractThe generation and propagation of action potentials in the two major cell types of the olfactory bulb, i.e., in the mitral and granule cells, are simulated by applying the multicompartmental modeling technique. The specific effects of the individual ionic currents, the propagation of the signals through the compartments, and several dynamic phenomena occurring in small networks (such as synchronized oscillation due to excitatory and inhibitory coupling) have been demonstrated

    Entropy production in a mesoscopic chemical reaction system with oscillatory and excitable dynamics

    Full text link
    Stochastic thermodynamics of chemical reaction systems has recently gained much attention. In the present paper, we consider such an issue for a system with both oscillatory and excitable dynamics, using catalytic oxidation of carbon monoxide on the surface of platinum crystal as an example. Starting from the chemical Langevin equations, we are able to calculate the stochastic entropy production P along a random trajectory in the concentration state space. Particular attention is paid to the dependence of the time averaged entropy productionP on the system sizeN in a parameter region close to the deterministic Hopf bifurcation.In the large system size (weak noise) limit, we find that P N^{\beta} with {\beta}=0 or 1 when the system is below or abovethe Hopf bifurcation, respectively. In the small system size (strong noise) limit, P always increases linearly with N regardless of the bifurcation parameter. More interestingly,P could even reach a maximum for some intermediate system size in a parameter region where the corresponding deterministic system shows steady state or small amplitude oscillation. The maximum value of P decreases as the system parameter approaches the so-called CANARD point where the maximum disappears.This phenomenon could be qualitativelyunderstood by partitioning the total entropy production into the contributions of spikes and of small amplitude oscillations.Comment: 13 pages, 6 figure

    Where are the Uranus Trojans?

    Full text link
    The area of stable motion for fictitious Trojan asteroids around Uranus' equilateral equilibrium points is investigated with respect to the inclination of the asteroid's orbit to determine the size of the regions and their shape. For this task we used the results of extensive numerical integrations of orbits for a grid of initial conditions around the points L4 and L5, and analyzed the stability of the individual orbits. Our basic dynamical model was the Outer Solar System (Jupiter, Saturn, Uranus and Neptune). We integrated the equations of motion of fictitious Trojans in the vicinity of the stable equilibrium points for selected orbits up to the age of the Solar system of 5 billion years. One experiment has been undertaken for cuts through the Lagrange points for fixed values of the inclinations, while the semimajor axes were varied. The extension of the stable region with respect to the initial semimajor axis lies between 19.05 < a < 19.3 AU but depends on the initial inclination. In another run the inclination of the asteroids' orbit was varied in the range 0 < i < 60 and the semimajor axes were fixed. It turned out that only four 'windows' of stable orbits survive: these are the orbits for the initial inclinations 0 < i < 7, 9 < i < 13, 31 < i < 36 and 38 < i < 50. We postulate the existence of at least some Trojans around the Uranus Lagrange points for the stability window at small and also high inclinations.Comment: 15 pages, 12 figures, submitted to CMD

    Influence of the coorbital resonance on the rotation of the Trojan satellites of Saturn

    Get PDF
    The Cassini spacecraft collects high resolution images of the saturnian satellites and reveals the surface of these new worlds. The shape and rotation of the satellites can be determined from the Cassini Imaging Science Subsystem data, employing limb coordinates and stereogrammetric control points. This is the case for Epimetheus (Tiscareno et al. 2009) that opens elaboration of new rotational models (Tiscareno et al. 2009; Noyelles 2010; Robutel et al. 2011). Especially, Epimetheus is characterized by its horseshoe shape orbit and the presence of the swap is essential to introduce explicitly into rotational models. During its journey in the saturnian system, Cassini spacecraft accumulates the observational data of the other satellites and it will be possible to determine the rotational parameters of several of them. To prepare these future observations, we built rotational models of the coorbital (also called Trojan) satellites Telesto, Calypso, Helene, and Polydeuces, in addition to Janus and Epimetheus. Indeed, Telesto and Calypso orbit around the L_4 and L_5 Lagrange points of Saturn-Tethys while Helene and Polydeuces are coorbital of Dione. The goal of this study is to understand how the departure from the Keplerian motion induced by the perturbations of the coorbital body, influences the rotation of these satellites. To this aim, we introduce explicitly the perturbation in the rotational equations by using the formalism developed by Erdi (1977) to represent the coorbital motions, and so we describe the rotational motion of the coorbitals, Janus and Epimetheus included, in compact form

    Noise control for molecular computing

    Get PDF
    Synthetic biology is a growing interdisciplinary field, with far-reaching applications, which aims to design biochemical systems that behave in a desired manner. With the advancement of strand-displacement DNA computing, a large class of abstract biochemical networks may be physically realized using DNA molecules. Methods for systematic design of the abstract systems with prescribed behaviors have been predominantly developed at the (less-detailed) deterministic level. However, stochastic effects, neglected at the deterministic level, are increasingly found to play an important role in biochemistry. In such circumstances, methods for controlling the intrinsic noise in the system are necessary for a successful network design at the (more-detailed) stochastic level. To bridge the gap, the noise-control algorithm for designing biochemical networks is developed in this paper. The algorithm structurally modifies any given reaction network under mass-action kinetics, in such a way that (i) controllable state-dependent noise is introduced into the stochastic dynamics, while (ii) the deterministic dynamics are preserved. The capabilities of the algorithm are demonstrated on a production-decay reaction system, and on an exotic system displaying bistability. For the production-decay system, it is shown that the algorithm may be used to redesign the network to achieve noise-induced multistability. For the exotic system, the algorithm is used to redesign the network to control the stochastic switching, and achieve noise-induced oscillations

    Properties of a random attachment growing network

    Full text link
    In this study we introduce and analyze the statistical structural properties of a model of growing networks which may be relevant to social networks. At each step a new node is added which selects 'k' possible partners from the existing network and joins them with probability delta by undirected edges. The 'activity' of the node ends here; it will get new partners only if it is selected by a newcomer. The model produces an infinite-order phase transition when a giant component appears at a specific value of delta, which depends on k. The average component size is discontinuous at the transition. In contrast, the network behaves significantly different for k=1. There is no giant component formed for any delta and thus in this sense there is no phase transition. However, the average component size diverges for delta greater or equal than one half.Comment: LaTeX, 19 pages, 6 figures. Discussion section, comments, a new figure and a new reference are added. Equations simplifie

    Prediction of Emerging Technologies Based on Analysis of the U.S. Patent Citation Network

    Full text link
    The network of patents connected by citations is an evolving graph, which provides a representation of the innovation process. A patent citing another implies that the cited patent reflects a piece of previously existing knowledge that the citing patent builds upon. A methodology presented here (i) identifies actual clusters of patents: i.e. technological branches, and (ii) gives predictions about the temporal changes of the structure of the clusters. A predictor, called the {citation vector}, is defined for characterizing technological development to show how a patent cited by other patents belongs to various industrial fields. The clustering technique adopted is able to detect the new emerging recombinations, and predicts emerging new technology clusters. The predictive ability of our new method is illustrated on the example of USPTO subcategory 11, Agriculture, Food, Textiles. A cluster of patents is determined based on citation data up to 1991, which shows significant overlap of the class 442 formed at the beginning of 1997. These new tools of predictive analytics could support policy decision making processes in science and technology, and help formulate recommendations for action

    The resonant structure of Jupiter's trojan asteroids-II. What happens for different configurations of the planetary system

    Full text link
    In a previous paper, we have found that the resonance structure of the present Jupiter Trojan swarms could be split up into four different families of resonances. Here, in a first step, we generalize these families in order to describe the resonances occurring in Trojan swarms embedded in a generic planetary system. The location of these families changes under a modification of the fundamental frequencies of the planets and we show how the resonant structure would evolve during a planetary migration. We present a general method, based on the knowledge of the fundamental frequencies of the planets and on those that can be reached by the Trojans, which makes it possible to predict and localize the main events arising in the swarms during migration. In particular, we show how the size and stability of the Trojan swarms are affected by the modification of the frequencies of the planets. Finally, we use this method to study the global dynamics of the Jovian Trojan swarms when Saturn migrates outwards. Besides the two resonances found by Morbidelli et al (2005) which could have led to the capture of the current population just after the crossing of the 2:1 orbital resonance, we also point out several sequences of chaotic events that can influence the Trojan population

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda
    corecore